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Background and Objective: Alzheimer’s Disease (AD) is a progressive irreversible neurodegeneration dis-
ease and thus timely identification is critical to delay its progression. Methods: In this work, we focus
on the traditional branch to design discriminative feature extraction and selection strategies to achieve
explainable AD identification. Specifically, a spatial pyramid based three-dimensional histogram of ori-
ented gradient (3D-HOG) feature learning method is proposed. Both global and local texture changes
are included in spatial pyramid 3D-HOG (SPHOG) features for comprehensive analysis. Then a modified
wrapper-based feature selection algorithm is introduced to select the discriminative features for AD iden-
tification while reduce feature dimensions. Results: Discriminative SPHOG histograms with various res-
olutions are selected, which can represent the atrophy characteristics of cerebral cortex with promising
performance. As subareas corresponding to selected histograms are consistent with clinical experience,
explanatory is emphasized and illustrated with Hippocampus. Conclusion: Experimental results illustrate
the effectiveness of the proposed method on feature learning based on samples obtained from common
dataset and a clinical dataset. The proposed method will be useful for further medical analysis as its
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explanatory on other region-of-interests (ROIs) of the brain for early diagnosis of AD.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimers Disease (AD) is a progressive neurodegenerative dis-
ease, which reflects anatomical atrophy or functional neurodegen-
eration of cerebral cortex. In recent years, some machine learn-
ing methods have been used to extract useful features from mag-
netic resonance imaging (MRI) scanned anatomical data to iden-
tify AD from Healthy Controls (HC). For feature extraction methods,
three-dimension (3D) image based methods can effectively pre-
serve the spatial feature information of MRI data compared with
two-dimension (2D) image based methods. These methods directly
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or indirectly extract 3D features from MRI data using traditional
feature extraction methods or deep learning methods respectively.

Most traditional feature extraction methods directly extract
anatomical features of cerebral cortex from MRI images. Among
them, the feature-based machine learning methods use the clin-
ical parameters as features, such as the volume of gray matter,
the cortical thickness, the mean curvature and area of cortical
which are extracted by FreeSurfer image analysis suite [1]. Some
image-based feature extraction methods extract features from
different transform domain, such as texture-based Gabor trans-
form method [2], multi-resolution-based discrete wavelet trans-
form (DWT) method [3]. And there are other image-based meth-
ods, which directly extract image-based feature to describe the at-
rophy or shape changes of region-of-interests(ROIs) of the brain,
such as ROIs-based sparse feature learning method [4,5], local bi-
nary pattern (LBP) method [6] and histogram of oriented gradient
(HOG) method [7,8]. As an image gradient based feature extraction
method, HOG method extracts image gradients within a region to
reflect its edge gradient changes [9], which is used for region de-
tection in medical images [10,11]. Considering that there is volume
atrophy and shape changes of cortical in AD, HOG method is also
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used to detect the local texture shape changes or gradient changes
of the image for early diagnosis of AD. For example, Devvi et.al ex-
tracted HOG feature from three orthogonal of planes to describe
the dynamic texture changes of MRI brain images [7]. Zhu et.al
proposed a new multi-view learning method to learn the map-
pings from the HOG feature space to the ROI feature space, which
uses 3D-HOG features as local features to reflect small or subtle
changes within brain [12]. And in [8], small scale HOG features are
extracted from ROIs and used to quantify spatial gradients of 18F-
FDG PET images for AD diagnosis. 3D-HOG features represent the
local texture changes within a volume statistic of spatial gradient
and overcome the information loss generated from 2D-HOG repre-
sentation. However, there are two main limits for 3D-HOG method:
(1) features with same scale only represent local visual features
with the same resolution, which cannot represent the character-
istics of the image comprehensively. (2) HOG features consist of
numerous histograms and thus cover invalid information. Effective
characteristic should be obtained in additional step for accurate
classification.

Although there are exhaustive extracted features, irrelevant or
redundant features may reduce the efficiency of learning algo-
rithms, i.e. not all extracted features are useful for the classifi-
cation problems. As discussed in [13] and [14], feature extrac-
tion usually encounter the so-called 'High Dimension, Low Sam-
ple Size (HDLSS)' problem. In order to resolve this problem, sub-
space learning methods and feature selection methods are used to
reduce the feature dimensions to choose discriminating features.
Subspace learning methods include linear methods, such as prin-
ciple component analysis (PCA) [4,15,16], linear discriminant anal-
ysis (LDA) [17,18], and non-linear methods, such as multi-kernel
methods [19,20]. Feature selection methods generally choose dis-
criminative feature subset for the following classification, which
are divided into class-dependent methods and class-independent
methods. Class-independent feature selection methods choose po-
tential features while ignoring different classes. Class-dependent
feature selection methods utilize different feature subsets to dis-
criminate different classes and obtain better performance than
class-independent feature selection [21], which can be further di-
vided into filter approaches and wrapper approaches depending on
whether classifier is used or not. Filter approaches utilize various
feature importance ranking methods for feature selection and se-
lected features are used for comprehensive classification. For ex-
ample, Minimal-RedundancyMaximal-Relevancy Measure (mRMR)
method [22] selects attributes with maximal relevance and the
minimal redundancy based on calculating the mutual informa-
tion. RELIEF method [23] is a weighted method which tends to
minimize intra-class distance and maximize inter-class distance.
Class Separability Measure (CSM) method [24] is proceeded by
calculating the intra-class and inter-class ratio which is used to
evaluate the contribution of each attribute. The wrapper based
method [21] finds discriminative feature subsets for each class
and then uses the class-dependent subset for final classification.
In [25], we proposed a wrapper-based feature selection method to
rank the feature importance, which can select most important fea-
ture parameters or featured ROIs for AD identification compared
with other feature selection methods.

As the image-based classification methods, deep learning meth-
ods use the whole brain or ROIs as input of the network to extract
2D or 3D features from MRI data indirectly. There are different net-
work structures introduced to extract discriminate features from
original images, such as convolution neural network (CNN), Resid-
ual Network (ResNet) [26], a combination of encoder-decoder net-
work [27], U-Net [28], DenseNet [29], and transfer learning strat-
egy [30]. Although these methods have shown good performance
on AD classification, it is difficult to present interpretability on the
extracted features or classification results because they incorpo-
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Table 1
Demographics of the subjects.
AD NC

Number 198 236
Female/Male 110/88 120/116
Age 72.61 £8.15 71.58 +£7.32
Education 11.1+£5.78 14.18 +£3.34
“MMSE 17.84 £6.11 29.06 +1.02
bCDR 0.5, 1 0

a: mini-mental state examination b: clinical dementia rating

rate feature extraction and classifier learning into an unified frame-
work [31,32]. Furthermore, the training outcome is unsatisfactory
as the lack of samples [33].

In this paper, we proposed a ROIs-based multi-resolution 3D-
HOG feature learning method for AD identification. Some prelimi-
nary accounts of this study were presented in our early conference
papers [25,34]. The main contributions of this paper can be con-
cluded as follows:

o First, we proposed a multi-resolution 3D-HOG feature extrac-
tion method to describe local and global texture changes for AD
identification, which can represent the characteristics of the im-
age comprehensively compared with previous HOG-based ap-
proaches.

Second, we proposed a histogram based wrapped feature se-
lection method, which can not only select discriminative his-
tograms with promising performance, but also detect distinct
subareas of ROIs for AD identification.

The remaining of this paper is organized as follows:
Section 2 presents the proposed feature extraction and fea-
ture selection method, Section 3 presents the experimental results,
followed by the conclusion of this paper in Section 4.

2. Methodology

Framework of the proposed method is shown in Fig. 1. First,
data preprocessing with MRI T1-weighted input is used to gener-
ate ROI-based images for feature extraction and classification. Sec-
ond, 3D-HOG from various scales is extracted as basic feature unit.
Third, spatial pyramid HOG features are constructed with multi-
scale 3D-HOG features for informative representation. Finally, fea-
ture selection techniques are introduced to search for discrimina-
tive features and further efficient classification.

2.1. Materials and image preprocessing

There are two dataset used in this study: the first one &,
is sampled from Peking University Third Hospital of China. The
first one ®; is downloaded from Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)!. Dataset ®; includes 67 AD subjects and
105 NC subjects, which are sampled from different 3T scanners
(i.e. GE, SIEMENS, PHILIP). Dataset &, includes 131 AD subjects
and 131 normal control (NC) subjects, which are sampled on a
SIEMENS Trio 3T scanner with the acquisition parameters TR/TE =
2350/3.44ms, voxel size =1 x 1 x 1mm?3. Both of two dataset are
T1 Magnetization Prepared Rapid Gradient Echo (MPRAGE) data.

Details of subjects are shown in Table 1. The general inclu-
sion/exclusion criteria can be described with mini-mental state
examination (MMSE) and clinical dementia rating (CDR), i.e. the
MMSE score of each NC subjects is in the range of 26 and 30 with
CDR of 0, while the MMSE score of each AD subjects is in the range
of 10 and 24, with CDR of 0.5 or 1.

T http://www.loni.ucla.edu/ ADNI
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Fig. 1. Framework of the proposed method.

Dataset are examined and preprocessed with SPM8 [35] in the
following steps. First, images are denoised and registered on the
brain template, and then are segmented into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) maps in the 're-
aligned’ and 'wrapped’ templates by using the 'new segment’ tool-
box. Second, 90 ROIs masks are obtained by utilizing WFU Pick-
Atlas [36] based on automated anatomical labeling (AAL) tem-
plates [37] with GM data. Third, each ROI is further cropped with
the same size (i.e. the minimal non-zero size of the specified ROI
for different samples) in cuboid form If, (t =1,2,...,90) respec-
tively, which are used for the following feature extraction.

2.2. Computation of 3D-HOG

3D-HOG feature represents local texture information within
given volume (i.e. cell) and thus is effective to capture volume de-
formation in MRI. Following is the procedure of 3D-HOG feature
extraction. First, spatial gradients at each pixel (x,y,z) for the t-th
ROI image It, (t = 1,2,... 90) can be approximated as

t ot t\ T
vI'(x.y.2) = BB DT = (56 55 5%)
Fx+1,y,2)-I(x—-1,y,2) (1)
~|Ixy+1.2-I'x.y—-1.2)|,

IFx,y,z+1)-I'(x,y,z—1)

where If(x,y,z) denotes the gray value of pixel (x,y,z) for k-
th ROIs. And the magnitude and direction of spatial gradient
vIt (x,y,z) can be computed as

r=\B+E+1I2

0 = tan~'(I,/I,),
¢ = Cosq (IZ/T),

where r is magnitude, 6 is azimuth, and ¢ is elevation.

Second, histogram for each cell of I is calculated to obtain 3D-
HOG descriptors. Spatial regions for each I* are referred as a block
with same size M x N x K, which is divided into m x n x k cells
with size S = (ly, Iy, I,)T. Each cell represents the small spatial re-
gion with length Iy, width I, and height I, of the cuboid, in which
the statistic is made. In this study, we divide the histogram into 9
x 18 bins for 6 and ¢. For each cell, the 2D histogram is created by
accumulating the gradient magnitude value r within different 162
bins for 6 and ¢. And we can obtain m x n x k histograms with
cell size S.

Third, histograms from different cells are arranged to construct
3D-HOG features for each ROI. And the dimension of obtained fea-
tures is of 162 x m x n x k for I¥ with cell size S. Thus, the 3D-HOG

(2)

Fig. 2. Left Hippocampus and its HOG feature with different cell sizes: (a) original
left Hippocampus; (b) HOG features with cell size (2,2,2)7; (c) HOG features with
cell size (4,4,4)7; (d) HOG features with cell size (8, 8,8)T.

features extracted with cell size S for I¥ are represented as

Hs = (h1(0,9),... hi(6,9).,...),
S = (vl L), (3)
where h;(0, ¢) represents the histogram for (6, ¢) of the ith cell.

2.3. Construction of spatial pyramid HOG

As described in [38,39], Spatial Pyramid Representation (SPR)
is used as an embedding method for describing both global and
local spatial information, which shows good performance on im-
age segmentation and classification. With SPR, discriminative SPR
is proposed to improve the effectiveness of feature representation,
which is a weighted sum of original features over various pyramid
levels [38].

Although extracted 3D-HOG features represent gradient statis-
tical characteristic within a specific range, features with the same
cell size represent gradient statistical characteristics with the same
resolution, which cannot represent the characteristics of the image
comprehensively. As shown in Fig. 2, 3D-HOG features with a small
cell size (high resolution) describe detailed spatial information by
making statistic within local receptive fields, while the extracted
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features with a large cell size (low resolution) describe overall spa-
tial information within global receptive fields. Fig. 2 (a) shows the
original left Hippocampus, whose basic shape can be reflected in
Fig. 2 (d) with a larger cell size S = (8,8,8)T. But more detailed
information of Hippocampus cannot be found in Fig. 2 (d). If we
extract 3D-HOG feature with a smaller cell size S = (2,2,2)T, we
can see more detail information while preserve the basic shape of
left Hippocampus in Fig. 2 (b). Fig. 2 (c) shows 3D-HOG features
from different resolutions with cell size S = (4, 4,4)T. From Fig. 2,
we can see that these HOG features with different cell sizes rep-
resent the statistical characteristics of original image in different
resolutions.

In this study, we build a multi-resolution 3D-HOG feature in
a spatial pyramid form (SPHOG) to capture both local and global
texture changes, which can further improve spatial resolution of
the extracted 3D-HOG features. The proposed SPHOG feature is a
cascading of 3D-HOG features with different cell sizes, which can
be described as

Hsp = {h|h € Hs,S=S'§%, ... S'}. (4)

where S represents the kth cell size, Hsp represents SPHOG fea-
ture.

2.4. Histogram based wrapped feature selection

Dimension of SPHOG is much higher than 3D-HOG. Although
SPHOG feature describes the gradient changes in various pyramid
levels comprehensively, direct classification with SPHOG is non-
efficient as the existence of some underlying features. Redundant
features which occur repeatedly in various scales would submerge
informative feature and larger feature size brings more irrelevant
features into potential feature set. Therefore, it is necessary to se-
lect discriminative features using some effective feature selection
methods.

In this study, a modified wrapper based feature selection algo-
rithm is proposed to select the discriminative feature subsets from
extracted SPHOG features.

First, discriminative feature subsets for each class (i.e. AD or HC
in this study) are selected based on forward search algorithm. For
the original HOG descriptor, it concatenates feature of every bin all
into one vector, in which each bin is used as a feature. Considering
cells divided with different sizes within one block (i.e. one ROI) can
reflect structural and statistical characteristics of ROI in different
resolutions, histograms for a cell (i.e. 3D-HOG descriptor) are used
as one feature to represent the characteristic, i.e. a histogram is
selected or not selected unitarily. In this way, spatial integrality is
preserved for further analysis and thus strengthen reliability and
interpretability of result. Same as general wrapper approaches, an
importance ranking is processed on histogram basis in advance to
evaluate the performance of each feature. This is an open step and
various measures can be applied, such as accuracy or sensitivity
for classification.

During forward selection process, 3D-HOG histograms are
added into the feature subset one by one in the order of im-
portance ranking to form a new feature subset. In this way, we
can obtain an incremental feature selection curve with the incre-
ment of sensitivity or specificity, in which the feature selection
point can be determined until a stopping condition is met. Stop-
ping condition makes sure that the forward search process ends
when the classification performance is decreasing. In this work,
single histograms with classification accuracy higher than 0.7 are
selected for incremental selection. Then, these selected histograms
are sorted in specific order for the following steps.

Second, a direct incremental selection method is utilized in this
histogram-based classification process. Different from the weighted
method which generates final probability estimation based on spe-
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Fig. 3. The selected SPHOG and 3D-HOG of Hippocampus-L. Some selected SPHOG
features are shown in red. (a) HOG features with cell size (2,2,2)T; (b) HOG fea-
tures with cell size (4,4,4)T; (c) HOG features with cell size (8,8, 8)7. (The black
lines are the HOGs in different positions, and the red lines are selected HOGs.)

cific feature subsets, as described in [40], direct method con-
structs the classification feature set according to classification per-
formance of single histogram. The direct method is applied as we
find that utilizing weighted method with proposed SPHOG selects
similar histograms for each class and cannot generate distinct re-
sult each class. The direct method selects histograms for feature
combination just concentrating on single histogram classification
accuracy and in this way the selected histograms distinguish for
both classes simultaneously.

With the proposed feature selection method, the form of his-
togram, i.e. SPHOG, is used as one feature entirely during feature
selection, in which the importance of each histogram for each class
is measured. However, in general wrapper-based feature selection,
the general method usually uses feature in one bin (i.e. in one di-
rection of the gradient) as the input of feature selection. It cannot
reflect the global or statistical information of the cell and also in-
crease the dimension of features. Such processing methods cannot
easily focus on the global or statistical information in unit of cell
as the integrity of bins within a histogram is disorganized when
single bin ranking proceeds. And the general operation on bins
in this way impedes the intact acquiring of local texture informa-
tion. Compared these two methods, the proposed feature selection
method shows the structural and statistical characteristics of the
image while saves about 80% of time consumption.

3. Experimental result and discussion

In the following experiments, 20 times Monte-Carlo simula-
tions are carried out to: (a) illustrate the effectiveness of SPHOG;
(b) illustrate the effectiveness of the proposed feature selection
method; (c) compare with other traditional machine learning
methods and deep learning methods; (d) illustrate the effective-
ness of the selected features. (e) illustrate the effectiveness of our
proposed methods on multi-region based identification.

65 AD subjects and 65 HC subjects (totally 130 samples) are
randomly selected as test sets and the rest samples serve as train
sets. Classification accuracy, true positive rate (TPR), false positive
rate (FPR), precision, F1-score and Kappa coefficient are used as in-
dicators for classification results. According to the diagnostic expe-
rience and previous studies, Hippocampus is one of the most dis-
criminative ROIs for AD identification. And thus we use left Hip-
pocampus (i.e. Hippocampus-L) to illustrate the effectiveness of the
proposed method in the first three experiments.

3.1. Effectiveness of SPHOG

In this work, SPHOG is built based on 3D-HOG with 5 cell sizes
1=4,5,6,7,8 with [y =1, =1, =I. It is used to combine local and
global features to represent the atrophy of the brain comprehen-
sively. Some 3D-HOG features are shown in Fig. 3, in which some
histograms are selected as feature subsets during feature selection
(shown in red). Based on 5 sizes of 3D-HOG features, we select
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Table 2

Classification results based on 3D-HOG and SPHOG for Hippocampus-L .
Name Accuracy  TPR FPR Precision  F1 Kappa
HOG2 0.777 0.784 0207 0.762 0.770  0.572
HOG3 0.794 0.828 0214 0.767 0.794  0.607
HOG4 0.839 0.828 0.133  0.840 0.832  0.694
HOG5 0.843 0817 0.115 0.857 0.835 0.701
HOG6 0.846 0.798 0.094 0.875 0.833  0.706
HOG7 0.821 0.777 0122  0.845 0.807  0.655
HOGS8 0.836 0.806 0.118  0.850 0.825  0.687
SPHOG  0.859 0.875 0.100 0.867 0.833  0.708

3D-HOG histograms from SPHOG for left Hippocampus. HOG4 fea-
ture extracted with cell size (4,4,4)" can represent the local tex-
ture of the structural MRI image, and HOGS with cell size (8, 8, 8)T
can reflect the global characteristic of left Hippocampus. In this
way, the most discriminative features from different spatial reso-
lutions are selected, which can achieve performance better than
single resolution representation. From Table 2, we can see that 3D-
HOG features with cell size smaller than 4 generally performs un-
stable as common characteristic cannot be analyzed in such over-
detailed texture. And thus in the process of SPHOG construction,
we do not use 3D-HOG with cell size 2. Furthermore, considering
the time-consumption and performance about classification utiliz-
ing 3D-HOG with cell size 3, we also give it up in the combination
of SPHOG. The result of 3D-HOG with cell size of 5 and 6 also il-
lustrates that this medial cell sizes match texture information of
left Hippocampus appropriately. The classification performance of
HOG7 and HOGS8 descends slightly shows that these large size op-
tions causes information lost in these options. SPHOG shows the
best performance compared with other 3D-HOG with different cell
sizes from S = (2,2,2)7 (i.e. HOG2) to S = (8, 8, 8)T (i.e. HOGS).

3.2. Effectiveness of histogram based wrappered feature selection

With extracted SPHOG features, we compare the performance
of feature selection between the proposed histogram based wrap-
per feature selection method and other feature selection methods.
General feature selection methods mRMR, RELIEF, CSM and general
wrapper-based method are utilized. And furthermore XGBoost [41],
Random Forest [42] group-manner methods are also used for com-
parison. Two extra methods proposed more recently, a supervised
method based on Gini distance statistics in [43] and an unsuper-
vised method SOCFS [44], are utilized for comparison.

First, all of 3D-HOG features are preprocessed. Some bins with
smaller variance(such as 10~>) within a 3D-HOG are removed from
this 3D-HOG feature, which compress bins with zeros or nearly
the same for all samples. Meanwhile, the preprocess procedure can
also be seen as a feature denoising part to exclude the irrelevant
bins and make extracted features more robust.

Second, based on the preprocessed 3D-HOG features, direct
method is used to generate final classification feature set accord-
ing to incremental feature selection process. As shown in Fig. 4,
this is an incremental figure of feature selection curve. Blue curve
represents the classification result on incremental selection process
and the red curve is the fitting result of 9th order polynomial fit-
ting. With the fitting curve we obtain the optimal amount of his-
tograms. In this study, there are more than 103 histograms before
feature selection and approximate 30 histograms left after feature
selection for histogram based wrappered feature selection method
with SPHOG features. For the other feature selection methods, ev-
ery bin within a 3D-HOG is used as a feature, i.e. there are lots of
bins for SPHOG. And the parameters in each method is tuned with
a grid search before formal experiment. In order to reduce time
consumption, for general wrapper-based feature selection method,
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Fig. 4. Incremental curve of selected features.

Table 3

Performance comparison between different feature selection methods with
the direct SVM classification (i.e. the top line) and the weighted classification
method (i.e. the bottom line) respectively.

Name Accuracy  TPR FPR Precision  F1 Kappa
Wrapper  0.852 0813 0.116  0.767 0.788  0.685
mRMR 0.852 0.813 0.116  0.766 0.788  0.685
RELEIF 0.861 0.808 0.140  0.792 0.799  0.704
CSM 0.856 0.813 0.110 0.761 0.793  0.694
XGBoost 0.846 0.806  0.121 0.848 0.825  0.687
RF 0.837 0.859 0.163  0.839 0.848 0.682
Gini_Cov  0.861 0.798  0.142  0.809 0.831 0.713
Gini_Cor  0.871 0.800 0.066 0.858 0.848 0.737
SOCFS 0.807 0.829 0235 0.796 0.774  0.653
Our 0.859 0.875 0.100 0.867 0.833  0.708
Method 0.844 0.843  0.171 0.815 0.835  0.687

10 bins are added into the feature subset at a time for the pre-
selected 2000 bins during incremental feature selection.

Finally, the direct method is used as classifiers for the se-
lected features and we also make a comparison with the weighted
method which generate AD and HC subsets respectively. Compared
with general feature selection methods, histogram based wrap-
per method maintains the histogram structure and thus preserves
the spatial information in features. As shown in Table 3, the di-
rect method works better compared with weighted method. The
proposed histogram based wrapper feature selection method per-
forms better than the general wrapper-based method, specially,
10% higher in precision and 2.3% in Kappa coefficient. In partic-
ular, the Recall (TPR) rate increases from 0.843 to 0.875, which
means the proposed method can select features with high recogni-
tion sensitivity to AD. Though the RELIEFF method obtains higher
result in classification accuracy compared with histogram based
wrapper method, we prefer the latter as its better performance in
other indicators, which illustrates more reliable and comprehensive
classification ability.

Compared with other methods, our method is still competitive.
Gini distance based methods perform better especially in low FPR,
same as Zhang et. al found in original work, but TPR is not accept-
able as this means a lower identification rate in our scenes. And
group based methods XGBoost and RF do not perform quite well
as the dimension of extracted feature.

Moreover, bins within a histogram contains complementary in-
formation about texture information and histogram based selection
contributes to the final feature in an integrated manner without
fragmented bins. In this way, the risk of neglecting some informa-
tive bins is minimized.

To illustrate the effectiveness of region selection, the locations
of the selected 3D-HOG in Hippocampus are illustrated in Fig. 5.
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Fig. 5. The locations of the selected features in Hippocampus. (a) Left Hippocam-
pus. (b) Right Hippocampus. The locations of the selected features are dotted with
different color to reflect the difference of classification accuracy. The color denotes
the classification accuracy from low (0.65) to high (0.811).

Table 4

Performance comparision between different feature extraction methods .
Name Accuracy  TPR FPR Precision  F1 Kappa
DWT 0.836 0.867 0.188  0.801 0.829 0.672
LBP 0.838 0.867 0.184  0.802 0.829  0.675
SIFT 0.853 0.875 0.206  0.821 0.863  0.705
ELP 0.842 0859 0.172  0.839 0.845  0.696
3D U-Net 0.842 0.847 0.163  0.856 0.840  0.683
3D ResNet 0.837 0.807  0.121 0.860 0.844  0.673
3D DenseNet 0.827 0.796 0229 0.824 0.803  0.652
MedicalNet3D  0.846 0.835 0.130 0.849 0.856  0.693
Our Method 0.859 0.875 0.100 0.867 0.833  0.708

From Fig. 5, we can see that most of the selected features are lo-
cated in cornu ammonis 1(CA1) and Subiculum of Hippocampus.
It is noticeable that some distinct Hippocampal Subfields (such as
CA1) are selected with the top 20% identification accuracy of AD,
which is consistent with the clinical experience.

3.3. Comparison with different feature extraction methods

In this section, we compare the performance of feature ex-
traction between the proposed SPHOG method and other fea-
ture extraction methods. For the traditional feature extraction
methods, the extracted features based on 3D Bi-orthogonal Dis-
crete Wavelet Transform (DWT) and LBP are selected using RELIEF
method and classified using SVM. SIFT with automatic key point
detection and scale determination [45] and Encoded Local Projec-
tion(ELP) [46] are used with wrapper selection method for com-
parison. For the deep learning methods, some general 3D deep
learning methods are compared, such as 3D U-net [47], 3D ResNet
(i.e. ResNet18 is used in this study), DenseNet [48] and 3D ResNet
based transfer learning method (MedicalNet3D) [30]. The network
structure of 3D U-Net is the same as described in [47]. For Med-
icalNet3D, the transfer learning work is similar to that described
in [30], in which ResNet18 is used and fine-tuned for classification.
Parameters during training are set as follows: the batch size is 32;
the learning rate is 0.001 and decays to 0.5 times every 50 epoch.
The stopping condition for training is set as 500 epochs or early
stopping when the classification accuracy is higher than 0.97 and
not increases for successive 5 epochs. We use Adaptive Movement
Estimation (Adam) as optimization algorithm and Mean Square Er-
ror (MSE) as loss function during training. And a grid search is
used in norm regularization to prevent over-fitting.

From the Table 4, we can see that the traditional feature extrac-
tion methods and deep learning methods achieve similar classifica-
tion performance. Limited by sample size, the performance of deep
learning methods is worse than the traditional methods. Compared
with traditional methods, the proposed method outperforms in
various indicators and in this way proves SPHOG’s effectiveness in
feature construction. As classifier is not the central problem in our
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Fig. 6. The identification accuracy for different ROIs. The color denotes the classifi-
cation accuracy from low (0.739) to high (0.883). (a)-(d) shows 16 ROIs of the brain
with different classification accuracy from different views (i.e. left, right, top and
down) respectively.

algorithm, SVM is employed for every traditional method in this
experiment. Compared with deep learning methods, the proposed
method achieves better classification performance and meanwhile
consumes much less time and computation resources in operating
process.

3.4. Classification results for other ROIs

According to diagnostic experience and previous stud-
ies [34,49,50], 16 distinct ROIs are selected for AD identification
to show experimental results. Experimental settings are consistent
with the general settings in Left Hippocampus.

As shown in Table 5, proposed method achieves excellent per-
formance on these clinical discriminative ROIs. From Table 5 and
Fig. 6, we can see that the average classification accuracy on
ParaHippocampus and Hippocampus all are higher than 0.85. Fur-
thermore, other brain regions related to cognition, such as Amyg-
dala and Fusiform, also get distinct performance for AD diagnosis.
This result is accord closely with clinic analysis that these ROIs are
associated with cognitive function and illustrates the effectiveness
of our algorithm.

3.5. Classification results on multi ROIs

With the classification performance of various brain regions in
Section 3.4, a more comprehensive identification can be obtained
across different brain regions based on the histogram based wrap-
per strategy. In particular, selected histograms from various brain
region combinations are utilized for incremental feature selection
and final classification. In this part, three different region combi-
nations are used based on the result in Table 6. AHP includes Hip-
pocampus, Amygdala and ParaHippocampus regions and has strong
connection with AD. Furthermore, these three brain regions also
gets best classification performance compared with other brain re-
gions as in Table 4. Considering special performance of right Hip-
pocampus, left and right ParaHippocampus, we also employ them
as TOP3 combination.

Experiment result is shown in Table. Compared with single re-
gion classification performance, multi-region performs better and
this illustrates complementary information in different brain re-
gions. AHP-R also outperforms AHP-L, which illustrates the right
laterality of brain. Moreover, TOP3 combination get best perfor-
mance among three combination options, which illustrates the tex-
ture distinction property of ParaHippocampus and Hippocampus.
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Table 5
Classification results for different ROIs .
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Name Accuracy  TPR

Hippocampus-L 0.859 0.875
Hippocampus-R 0.880 0.850
Amygdala-L 0.821 0.785
Amygdala-R 0.840 0.785
ParaHipp-L 0.874 0.859
ParaHipp-R 0.883 0.823
Caudate-L 0.813 0.781
Caudate-R 0.802 0.759
Cingulum-Ant-L 0.745 0.605
Cingulum-Ant-R 0.739 0.739
Cingulum-Post-L ~ 0.807 0.879
Cingulum-Post-R ~ 0.827 0.867
Fusiform-L 0.823 0.718
Fusiform-R 0.822 0.789
Angular-L 0.739 0.551
Angular-R 0.786 0.634

FPR Precision  F1 Kappa
0.100  0.867 0.833  0.708
0.094 0.884 0.866  0.757
0.146  0.823 0.801  0.638
0.113  0.853 0.815 0.674
0.113  0.866 0.860  0.745
0.066 0.912 0.864  0.762
0.159  0.809 0.793  0.621
0.162  0.796 0.775  0.598
0.134  0.791 0.681 0477
0.257  0.711 0.721 0476
0.265  0.780 0.826  0.608
0221 0816 0.841  0.650
0.091 0.864 0.782  0.635
0.148  0.822 0.802  0.640
0.104 0811 0.650  0.651
0.089  0.852 0.723  0.556

Table 6

Classification results based on multi brain regions combination .
Name Accuracy TPR FPR Precision F1 Kappa
AHP 0.898 0.870 0.077 0.904 0.885 0.792
AHP-L 0.873 0.861 0.116 0.861 0.859 0.743
AHP-R 0.895 0.860 0.075 0.905 0.880 0.787
TOP3 0.904 0.880 0.086 0.897 0.887 0.792

4. Conclusions

In this paper, we proposed a novel feature learning method for
AD identification. From spatial pyramid representation, the multi-
resolution SPHOG features are constructed to distinguish the defor-
mation characteristics of cerebral cortex comprehensively. With the
proposed histogram based wrappered feature selection algorithm,
the discriminative SPHOG features are selected and the feature di-
mensions are reduced. Experimental results show that the selected
SPHOG features outperforms other 3D-HOG features with single
resolution. Furthermore, some distinct Hippocampal Subfields and
some ROIs associated with cognitive function show high identifica-
tion accuracy of AD, which is consistent with the clinical analysis.

Considering for future improvement, our method mainly fo-
cus on a general explainable framework for AD identification and
in each step more specific work can be done. More informa-
tive feature extraction methods and feature selection process can
strengthen identification performance. Moreover, with current de-
tected volumes more exploration can be done in both CAD and
clinical fields to analyze these sensitive regions. That could be use-
ful for further medical analysis to find distinct subfields of ROIs of
the brain for early diagnosis of AD.
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