
Computer Methods and Programs in Biomedicine 214 (2022) 106574 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Multi-resolution 3D-HOG feature learning method for Alzheimer’s 

Disease diagnosis 

� 

Zhiyuan Ding 

a , Yan Liu 

b , Xu Tian 

b , Wenjing Lu 

a , Zheng Wang 

c , Xiangzhu Zeng 

c , ∗∗, 
Ling Wang 

a , ∗

a School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China 
b School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China 
c Department of Radiology, Peking University Third Hospital, Beijing, China 

a r t i c l e i n f o 

Article history: 

Received 5 July 2021 

Revised 25 November 2021 

Accepted 1 December 2021 

Keywords: 

Feature learning 

Multi-resolution 

HOG 

Alzheimer’s Disease 

a b s t r a c t 

Background and Objective: Alzheimer’s Disease (AD) is a progressive irreversible neurodegeneration dis- 

ease and thus timely identification is critical to delay its progression. Methods: In this work, we focus 

on the traditional branch to design discriminative feature extraction and selection strategies to achieve 

explainable AD identification. Specifically, a spatial pyramid based three-dimensional histogram of ori- 

ented gradient (3D-HOG) feature learning method is proposed. Both global and local texture changes 

are included in spatial pyramid 3D-HOG (SPHOG) features for comprehensive analysis. Then a modified 

wrapper-based feature selection algorithm is introduced to select the discriminative features for AD iden- 

tification while reduce feature dimensions. Results: Discriminative SPHOG histograms with various res- 

olutions are selected, which can represent the atrophy characteristics of cerebral cortex with promising 

performance. As subareas corresponding to selected histograms are consistent with clinical experience, 

explanatory is emphasized and illustrated with Hippocampus. Conclusion: Experimental results illustrate 

the effectiveness of the proposed method on feature learning based on samples obtained from common 

dataset and a clinical dataset. The proposed method will be useful for further medical analysis as its 

explanatory on other region-of-interests (ROIs) of the brain for early diagnosis of AD. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimers Disease (AD) is a progressive neurodegenerative dis- 

ase, which reflects anatomical atrophy or functional neurodegen- 

ration of cerebral cortex. In recent years, some machine learn- 

ng methods have been used to extract useful features from mag- 

etic resonance imaging (MRI) scanned anatomical data to iden- 

ify AD from Healthy Controls (HC). For feature extraction methods, 

hree-dimension (3D) image based methods can effectively pre- 

erve the spatial feature information of MRI data compared with 

wo-dimension (2D) image based methods. These methods directly 
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r indirectly extract 3D features from MRI data using traditional 

eature extraction methods or deep learning methods respectively. 

Most traditional feature extraction methods directly extract 

natomical features of cerebral cortex from MRI images. Among 

hem, the feature-based machine learning methods use the clin- 

cal parameters as features, such as the volume of gray matter, 

he cortical thickness, the mean curvature and area of cortical 

hich are extracted by FreeSurfer image analysis suite [1] . Some 

mage-based feature extraction methods extract features from 

ifferent transform domain, such as texture-based Gabor trans- 

orm method [2] , multi-resolution-based discrete wavelet trans- 

orm (DWT) method [3] . And there are other image-based meth- 

ds, which directly extract image-based feature to describe the at- 

ophy or shape changes of region-of-interests(ROIs) of the brain, 

uch as ROIs-based sparse feature learning method [4,5] , local bi- 

ary pattern (LBP) method [6] and histogram of oriented gradient 

HOG) method [7,8] . As an image gradient based feature extraction 

ethod, HOG method extracts image gradients within a region to 

eflect its edge gradient changes [9] , which is used for region de- 

ection in medical images [10,11] . Considering that there is volume 

trophy and shape changes of cortical in AD, HOG method is also 
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Table 1 

Demographics of the subjects. 

AD NC 

Number 198 236 

Female/Male 110/88 120/116 

Age 72 . 61 ± 8 . 15 71 . 58 ± 7 . 32 

Education 11 . 1 ± 5 . 78 14 . 18 ± 3 . 34 
a M M SE 17 . 84 ± 6 . 11 29 . 06 ± 1 . 02 
b CDR 0.5, 1 0 

a : mini-mental state examination b: clinical dementia rating 
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1 http://www.loni.ucla.edu/ ADNI 
sed to detect the local texture shape changes or gradient changes 

f the image for early diagnosis of AD. For example, Devvi et.al ex- 

racted HOG feature from three orthogonal of planes to describe 

he dynamic texture changes of MRI brain images [7] . Zhu et.al 

roposed a new multi-view learning method to learn the map- 

ings from the HOG feature space to the ROI feature space, which 

ses 3D-HOG features as local features to reflect small or subtle 

hanges within brain [12] . And in [8] , small scale HOG features are

xtracted from ROIs and used to quantify spatial gradients of 18F- 

DG PET images for AD diagnosis. 3D-HOG features represent the 

ocal texture changes within a volume statistic of spatial gradient 

nd overcome the information loss generated from 2D-HOG repre- 

entation. However, there are two main limits for 3D-HOG method: 

1) features with same scale only represent local visual features 

ith the same resolution, which cannot represent the character- 

stics of the image comprehensively. (2) HOG features consist of 

umerous histograms and thus cover invalid information. Effective 

haracteristic should be obtained in additional step for accurate 

lassification. 

Although there are exhaustive extracted features, irrelevant or 

edundant features may reduce the efficiency of learning algo- 

ithms, i.e. not all extracted features are useful for the classifi- 

ation problems. As discussed in [13] and [14] , feature extrac- 

ion usually encounter the so-called ’High Dimension, Low Sam- 

le Size (HDLSS)’ problem. In order to resolve this problem, sub- 

pace learning methods and feature selection methods are used to 

educe the feature dimensions to choose discriminating features. 

ubspace learning methods include linear methods, such as prin- 

iple component analysis (PCA) [4,15,16] , linear discriminant anal- 

sis (LDA) [17,18] , and non-linear methods, such as multi-kernel 

ethods [19,20] . Feature selection methods generally choose dis- 

riminative feature subset for the following classification, which 

re divided into class-dependent methods and class-independent 

ethods. Class-independent feature selection methods choose po- 

ential features while ignoring different classes. Class-dependent 

eature selection methods utilize different feature subsets to dis- 

riminate different classes and obtain better performance than 

lass-independent feature selection [21] , which can be further di- 

ided into filter approaches and wrapper approaches depending on 

hether classifier is used or not. Filter approaches utilize various 

eature importance ranking methods for feature selection and se- 

ected features are used for comprehensive classification. For ex- 

mple, Minimal-RedundancyMaximal-Relevancy Measure (mRMR) 

ethod [22] selects attributes with maximal relevance and the 

inimal redundancy based on calculating the mutual informa- 

ion. RELIEF method [23] is a weighted method which tends to 

inimize intra-class distance and maximize inter-class distance. 

lass Separability Measure (CSM) method [24] is proceeded by 

alculating the intra-class and inter-class ratio which is used to 

valuate the contribution of each attribute. The wrapper based 

ethod [21] finds discriminative feature subsets for each class 

nd then uses the class-dependent subset for final classification. 

n [25] , we proposed a wrapper-based feature selection method to 

ank the feature importance, which can select most important fea- 

ure parameters or featured ROIs for AD identification compared 

ith other feature selection methods. 

As the image-based classification methods, deep learning meth- 

ds use the whole brain or ROIs as input of the network to extract 

D or 3D features from MRI data indirectly. There are different net- 

ork structures introduced to extract discriminate features from 

riginal images, such as convolution neural network (CNN), Resid- 

al Network (ResNet) [26] , a combination of encoder-decoder net- 

ork [27] , U-Net [28] , DenseNet [29] , and transfer learning strat- 

gy [30] . Although these methods have shown good performance 

n AD classification, it is difficult to present interpretability on the 

xtracted features or classification results because they incorpo- 
2 
ate feature extraction and classifier learning into an unified frame- 

ork [31,32] . Furthermore, the training outcome is unsatisfactory 

s the lack of samples [33] . 

In this paper, we proposed a ROIs-based multi-resolution 3D- 

OG feature learning method for AD identification. Some prelimi- 

ary accounts of this study were presented in our early conference 

apers [25,34] . The main contributions of this paper can be con- 

luded as follows: 

• First, we proposed a multi-resolution 3D-HOG feature extrac- 

tion method to describe local and global texture changes for AD 

identification, which can represent the characteristics of the im- 

age comprehensively compared with previous HOG-based ap- 

proaches. 
• Second, we proposed a histogram based wrapped feature se- 

lection method, which can not only select discriminative his- 

tograms with promising performance, but also detect distinct 

subareas of ROIs for AD identification. 

The remaining of this paper is organized as follows: 

ection 2 presents the proposed feature extraction and fea- 

ure selection method, Section 3 presents the experimental results, 

ollowed by the conclusion of this paper in Section 4 . 

. Methodology 

Framework of the proposed method is shown in Fig. 1 . First, 

ata preprocessing with MRI T1-weighted input is used to gener- 

te ROI-based images for feature extraction and classification. Sec- 

nd, 3D-HOG from various scales is extracted as basic feature unit. 

hird, spatial pyramid HOG features are constructed with multi- 

cale 3D-HOG features for informative representation. Finally, fea- 

ure selection techniques are introduced to search for discrimina- 

ive features and further efficient classification. 

.1. Materials and image preprocessing 

There are two dataset used in this study: the first one �1 

s sampled from Peking University Third Hospital of China. The 

rst one �1 is downloaded from Alzheimer’s Disease Neuroimag- 

ng Initiative (ADNI) 1 . Dataset �1 includes 67 AD subjects and 

05 NC subjects, which are sampled from different 3T scanners 

i.e. GE, SIEMENS, PHILIP). Dataset �2 includes 131 AD subjects 

nd 131 normal control (NC) subjects, which are sampled on a 

IEMENS Trio 3T scanner with the acquisition parameters T R/T E = 

350 / 3 . 44 ms, voxel size = 1 × 1 × 1 mm 

3 . Both of two dataset are

1 Magnetization Prepared Rapid Gradient Echo (MPRAGE) data. 

Details of subjects are shown in Table 1 . The general inclu- 

ion/exclusion criteria can be described with mini-mental state 

xamination (MMSE) and clinical dementia rating (CDR), i.e. the 

MSE score of each NC subjects is in the range of 26 and 30 with

DR of 0, while the MMSE score of each AD subjects is in the range

f 10 and 24, with CDR of 0.5 or 1. 

http://www.loni.ucla.edu/
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Fig. 1. Framework of the proposed method. 
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Fig. 2. Left Hippocampus and its HOG feature with different cell sizes: (a) original 

left Hippocampus; (b) HOG features with cell size (2 , 2 , 2) T ; (c) HOG features with 

cell size (4 , 4 , 4) T ; (d) HOG features with cell size (8 , 8 , 8) T . 
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Dataset are examined and preprocessed with SPM8 [35] in the 

ollowing steps. First, images are denoised and registered on the 

rain template, and then are segmented into gray matter (GM), 

hite matter (WM) and cerebrospinal fluid (CSF) maps in the ’re- 

ligned’ and ’wrapped’ templates by using the ’new segment’ tool- 

ox. Second, 90 ROIs masks are obtained by utilizing WFU Pick- 

tlas [36] based on automated anatomical labeling (AAL) tem- 

lates [37] with GM data. Third, each ROI is further cropped with 

he same size (i.e. the minimal non-zero size of the specified ROI 

or different sam ples) in cuboid form I t , (t = 1 , 2 , . . . , 90) respec-

ively, which are used for the following feature extraction. 

.2. Computation of 3D-HOG 

3D-HOG feature represents local texture information within 

iven volume (i.e. cell) and thus is effective to capture volume de- 

ormation in MRI. Following is the procedure of 3D-HOG feature 

xtraction. First, spatial gradients at each pixel (x, y, z) for the t-th 

OI image I t , (t = 1 , 2 , . . . 90) can be approximated as 

 I t (x, y, z) = (I t x , I 
t 
y , I 

t 
z ) 

T = 

(
∂ I t 

∂x 
, ∂ I t 

∂y 
, ∂ I t 

∂z 

)T 

≈
( 

I t (x + 1 , y, z) − I t (x − 1 , y, z) 
I t (x, y + 1 , z) − I t (x, y − 1 , z) 
I t (x, y, z + 1) − I t (x, y, z − 1) 

) 

, 
(1) 

here I t (x, y, z) denotes the gray value of pixel (x, y, z) for k -

h ROIs. And the magnitude and direction of spatial gradient 

 I t (x, y, z) can be computed as 

 = 

√ 

I 2 x + I 2 y + I 2 z , 

θ = tan 

−1 ( I y / I x ) , (2) 

φ = cos −1 ( I z /r) , 

here r is magnitude, θ is azimuth, and φ is elevation. 

Second, histogram for each cell of I t is calculated to obtain 3D- 

OG descriptors. Spatial regions for each I t are referred as a block 

ith same size M × N × K, which is divided into m × n × k cells 

ith size S = (l x , l y , l z ) T . Each cell represents the small spatial re-

ion with length l x , width l y and height l z of the cuboid, in which

he statistic is made. In this study, we divide the histogram into 9 

18 bins for θ and φ. For each cell, the 2D histogram is created by 

ccumulating the gradient magnitude value r within different 162 

ins for θ and φ. And we can obtain m × n × k histograms with 

ell size S. 

Third, histograms from different cells are arranged to construct 

D-HOG features for each ROI. And the dimension of obtained fea- 

ures is of 162 × m × n × k for I k with cell size S. Thus, the 3D-HOG
3 
eatures extracted with cell size S for I k are represented as 

 S = ( h 1 ( θ, φ) , . . . h i (θ, φ) , . . . ) , 

S = (l x , l y , l z ) 
T , (3) 

here h i (θ, φ) represents the histogram for (θ, φ) of the i th cell. 

.3. Construction of spatial pyramid HOG 

As described in [38,39] , Spatial Pyramid Representation (SPR) 

s used as an embedding method for describing both global and 

ocal spatial information, which shows good performance on im- 

ge segmentation and classification. With SPR, discriminative SPR 

s proposed to improve the effectiveness of feature representation, 

hich is a weighted sum of original features over various pyramid 

evels [38] . 

Although extracted 3D-HOG features represent gradient statis- 

ical characteristic within a specific range, features with the same 

ell size represent gradient statistical characteristics with the same 

esolution, which cannot represent the characteristics of the image 

omprehensively. As shown in Fig. 2 , 3D-HOG features with a small 

ell size (high resolution) describe detailed spatial information by 

aking statistic within local receptive fields, while the extracted 
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Fig. 3. The selected SPHOG and 3D-HOG of Hippocampus-L. Some selected SPHOG 

features are shown in red. (a) HOG features with cell size (2 , 2 , 2) T ; (b) HOG fea- 

tures with cell size (4 , 4 , 4) T ; (c) HOG features with cell size (8 , 8 , 8) T . (The black 

lines are the HOGs in different positions, and the red lines are selected HOGs.) 
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eatures with a large cell size (low resolution) describe overall spa- 

ial information within global receptive fields. Fig. 2 (a) shows the 

riginal left Hippocampus, whose basic shape can be reflected in 

ig. 2 (d) with a larger cell size S = (8 , 8 , 8) T . But more detailed

nformation of Hippocampus cannot be found in Fig. 2 (d). If we 

xtract 3D-HOG feature with a smaller cell size S = (2 , 2 , 2) T , we

an see more detail information while preserve the basic shape of 

eft Hippocampus in Fig. 2 (b). Fig. 2 (c) shows 3D-HOG features 

rom different resolutions with cell size S = (4 , 4 , 4) T . From Fig. 2 ,

e can see that these HOG features with different cell sizes rep- 

esent the statistical characteristics of original image in different 

esolutions. 

In this study, we build a multi-resolution 3D-HOG feature in 

 spatial pyramid form (SPHOG) to capture both local and global 

exture changes, which can further improve spatial resolution of 

he extracted 3D-HOG features. The proposed SPHOG feature is a 

ascading of 3D-HOG features with different cell sizes, which can 

e described as 

 SP = { h | h ∈ H S , S = S 1 , S 2 , . . . S t } . (4)

here S k represents the k th cell size, H SP represents SPHOG fea- 

ure. 

.4. Histogram based wrapped feature selection 

Dimension of SPHOG is much higher than 3D-HOG. Although 

PHOG feature describes the gradient changes in various pyramid 

evels comprehensively, direct classification with SPHOG is non- 

fficient as the existence of some underlying features. Redundant 

eatures which occur repeatedly in various scales would submerge 

nformative feature and larger feature size brings more irrelevant 

eatures into potential feature set. Therefore, it is necessary to se- 

ect discriminative features using some effective feature selection 

ethods. 

In this study, a modified wrapper based feature selection algo- 

ithm is proposed to select the discriminative feature subsets from 

xtracted SPHOG features. 

First, discriminative feature subsets for each class (i.e. AD or HC 

n this study) are selected based on forward search algorithm. For 

he original HOG descriptor, it concatenates feature of every bin all 

nto one vector, in which each bin is used as a feature. Considering 

ells divided with different sizes within one block (i.e. one ROI) can 

eflect structural and statistical characteristics of ROI in different 

esolutions, histograms for a cell (i.e. 3D-HOG descriptor) are used 

s one feature to represent the characteristic, i.e. a histogram is 

elected or not selected unitarily. In this way, spatial integrality is 

reserved for further analysis and thus strengthen reliability and 

nterpretability of result. Same as general wrapper approaches, an 

mportance ranking is processed on histogram basis in advance to 

valuate the performance of each feature. This is an open step and 

arious measures can be applied, such as accuracy or sensitivity 

or classification. 

During forward selection process, 3D-HOG histograms are 

dded into the feature subset one by one in the order of im- 

ortance ranking to form a new feature subset. In this way, we 

an obtain an incremental feature selection curve with the incre- 

ent of sensitivity or specificity, in which the feature selection 

oint can be determined until a stopping condition is met. Stop- 

ing condition makes sure that the forward search process ends 

hen the classification performance is decreasing. In this work, 

ingle histograms with classification accuracy higher than 0.7 are 

elected for incremental selection. Then, these selected histograms 

re sorted in specific order for the following steps. 

Second, a direct incremental selection method is utilized in this 

istogram-based classification process. Different from the weighted 

ethod which generates final probability estimation based on spe- 
4 
ific feature subsets, as described in [40] , direct method con- 

tructs the classification feature set according to classification per- 

ormance of single histogram. The direct method is applied as we 

nd that utilizing weighted method with proposed SPHOG selects 

imilar histograms for each class and cannot generate distinct re- 

ult each class. The direct method selects histograms for feature 

ombination just concentrating on single histogram classification 

ccuracy and in this way the selected histograms distinguish for 

oth classes simultaneously. 

With the proposed feature selection method, the form of his- 

ogram, i.e. SPHOG, is used as one feature entirely during feature 

election, in which the importance of each histogram for each class 

s measured. However, in general wrapper-based feature selection, 

he general method usually uses feature in one bin (i.e. in one di- 

ection of the gradient) as the input of feature selection. It cannot 

eflect the global or statistical information of the cell and also in- 

rease the dimension of features. Such processing methods cannot 

asily focus on the global or statistical information in unit of cell 

s the integrity of bins within a histogram is disorganized when 

ingle bin ranking proceeds. And the general operation on bins 

n this way impedes the intact acquiring of local texture informa- 

ion. Compared these two methods, the proposed feature selection 

ethod shows the structural and statistical characteristics of the 

mage while saves about 80% of time consumption. 

. Experimental result and discussion 

In the following experiments, 20 times Monte-Carlo simula- 

ions are carried out to: (a) illustrate the effectiveness of SPHOG; 

b) illustrate the effectiveness of the proposed feature selection 

ethod; (c) compare with other traditional machine learning 

ethods and deep learning methods; (d) illustrate the effective- 

ess of the selected features. (e) illustrate the effectiveness of our 

roposed methods on multi-region based identification. 

65 AD subjects and 65 HC subjects (totally 130 samples) are 

andomly selected as test sets and the rest samples serve as train 

ets. Classification accuracy, true positive rate (TPR), false positive 

ate (FPR), precision, F1-score and Kappa coefficient are used as in- 

icators for classification results. According to the diagnostic expe- 

ience and previous studies, Hippocampus is one of the most dis- 

riminative ROIs for AD identification. And thus we use left Hip- 

ocampus (i.e. Hippocampus-L) to illustrate the effectiveness of the 

roposed method in the first three experiments. 

.1. Effectiveness of SPHOG 

In this work, SPHOG is built based on 3D-HOG with 5 cell sizes 

 = 4 , 5 , 6 , 7 , 8 with l x = l y = l z = l. It is used to combine local and

lobal features to represent the atrophy of the brain comprehen- 

ively. Some 3D-HOG features are shown in Fig. 3 , in which some 

istograms are selected as feature subsets during feature selection 

shown in red). Based on 5 sizes of 3D-HOG features, we select 
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Table 2 

Classification results based on 3D-HOG and SPHOG for Hippocampus-L . 

Name Accuracy TPR FPR Precision F1 Kappa 

HOG2 0.777 0.784 0.207 0.762 0.770 0.572 

HOG3 0.794 0.828 0.214 0.767 0.794 0.607 

HOG4 0.839 0.828 0.133 0.840 0.832 0.694 

HOG5 0.843 0.817 0.115 0.857 0.835 0.701 

HOG6 0.846 0.798 0.094 0.875 0.833 0.706 

HOG7 0.821 0.777 0.122 0.845 0.807 0.655 

HOG8 0.836 0.806 0.118 0.850 0.825 0.687 

SPHOG 0.859 0.875 0.100 0.867 0.833 0.708 
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Fig. 4. Incremental curve of selected features. 

Table 3 

Performance comparison between different feature selection methods with 

the direct SVM classification (i.e. the top line) and the weighted classification 

method (i.e. the bottom line) respectively. 

Name Accuracy TPR FPR Precision F1 Kappa 

Wrapper 0.852 0.813 0.116 0.767 0.788 0.685 

mRMR 0.852 0.813 0.116 0.766 0.788 0.685 

RELEIF 0.861 0.808 0.140 0.792 0.799 0.704 

CSM 0.856 0.813 0.110 0.761 0.793 0.694 

XGBoost 0.846 0.806 0.121 0.848 0.825 0.687 

RF 0.837 0.859 0.163 0.839 0.848 0.682 

Gini_Cov 0.861 0.798 0.142 0.809 0.831 0.713 

Gini_Cor 0.871 0.800 0.066 0.858 0.848 0.737 

SOCFS 0.807 0.829 0.235 0.796 0.774 0.653 

Our 

Method 

0.859 0.875 0.100 0.867 0.833 0.708 

0.844 0.843 0.171 0.815 0.835 0.687 
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D-HOG histograms from SPHOG for left Hippocampus. HOG4 fea- 

ure extracted with cell size (4 , 4 , 4) T can represent the local tex-

ure of the structural MRI image, and HOG8 with cell size (8 , 8 , 8) T 

an reflect the global characteristic of left Hippocampus. In this 

ay, the most discriminative features from different spatial reso- 

utions are selected, which can achieve performance better than 

ingle resolution representation. From Table 2 , we can see that 3D- 

OG features with cell size smaller than 4 generally performs un- 

table as common characteristic cannot be analyzed in such over- 

etailed texture. And thus in the process of SPHOG construction, 

e do not use 3D-HOG with cell size 2. Furthermore, considering 

he time-consumption and performance about classification utiliz- 

ng 3D-HOG with cell size 3, we also give it up in the combination

f SPHOG. The result of 3D-HOG with cell size of 5 and 6 also il-

ustrates that this medial cell sizes match texture information of 

eft Hippocampus appropriately. The classification performance of 

OG7 and HOG8 descends slightly shows that these large size op- 

ions causes information lost in these options. SPHOG shows the 

est performance compared with other 3D-HOG with different cell 

izes from S = (2 , 2 , 2) T (i.e. HOG2) to S = (8 , 8 , 8) T (i.e. HOG8). 

.2. Effectiveness of histogram based wrappered feature selection 

With extracted SPHOG features, we compare the performance 

f feature selection between the proposed histogram based wrap- 

er feature selection method and other feature selection methods. 

eneral feature selection methods mRMR, RELIEF, CSM and general 

rapper-based method are utilized. And furthermore XGBoost [41] , 

andom Forest [42] group-manner methods are also used for com- 

arison. Two extra methods proposed more recently, a supervised 

ethod based on Gini distance statistics in [43] and an unsuper- 

ised method SOCFS [44] , are utilized for comparison. 

First, all of 3D-HOG features are preprocessed. Some bins with 

maller variance(such as 10 −5 ) within a 3D-HOG are removed from 

his 3D-HOG feature, which compress bins with zeros or nearly 

he same for all samples. Meanwhile, the preprocess procedure can 

lso be seen as a feature denoising part to exclude the irrelevant 

ins and make extracted features more robust. 

Second, based on the preprocessed 3D-HOG features, direct 

ethod is used to generate final classification feature set accord- 

ng to incremental feature selection process. As shown in Fig. 4 , 

his is an incremental figure of feature selection curve. Blue curve 

epresents the classification result on incremental selection process 

nd the red curve is the fitting result of 9th order polynomial fit- 

ing. With the fitting curve we obtain the optimal amount of his- 

ograms. In this study, there are more than 10 3 histograms before 

eature selection and approximate 30 histograms left after feature 

election for histogram based wrappered feature selection method 

ith SPHOG features. For the other feature selection methods, ev- 

ry bin within a 3D-HOG is used as a feature, i.e. there are lots of

ins for SPHOG. And the parameters in each method is tuned with 

 grid search before formal experiment. In order to reduce time 

onsumption, for general wrapper-based feature selection method, 
5 
0 bins are added into the feature subset at a time for the pre- 

elected 20 0 0 bins during incremental feature selection. 

Finally, the direct method is used as classifiers for the se- 

ected features and we also make a comparison with the weighted 

ethod which generate AD and HC subsets respectively. Compared 

ith general feature selection methods, histogram based wrap- 

er method maintains the histogram structure and thus preserves 

he spatial information in features. As shown in Table 3 , the di- 

ect method works better compared with weighted method. The 

roposed histogram based wrapper feature selection method per- 

orms better than the general wrapper-based method, specially, 

0% higher in precision and 2 . 3% in Kappa coefficient. In partic- 

lar, the Recall (TPR) rate increases from 0.843 to 0.875, which 

eans the proposed method can select features with high recogni- 

ion sensitivity to AD. Though the RELIEFF method obtains higher 

esult in classification accuracy compared with histogram based 

rapper method, we prefer the latter as its better performance in 

ther indicators, which illustrates more reliable and comprehensive 

lassification ability. 

Compared with other methods, our method is still competitive. 

ini distance based methods perform better especially in low FPR, 

ame as Zhang et. al found in original work, but TPR is not accept- 

ble as this means a lower identification rate in our scenes. And 

roup based methods XGBoost and RF do not perform quite well 

s the dimension of extracted feature. 

Moreover, bins within a histogram contains complementary in- 

ormation about texture information and histogram based selection 

ontributes to the final feature in an integrated manner without 

ragmented bins. In this way, the risk of neglecting some informa- 

ive bins is minimized. 

To illustrate the effectiveness of region selection, the locations 

f the selected 3D-HOG in Hippocampus are illustrated in Fig. 5 . 
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Fig. 5. The locations of the selected features in Hippocampus. (a) Left Hippocam- 

pus. (b) Right Hippocampus. The locations of the selected features are dotted with 

different color to reflect the difference of classification accuracy. The color denotes 

the classification accuracy from low (0.65) to high (0.811). 

Table 4 

Performance comparision between different feature extraction methods . 

Name Accuracy TPR FPR Precision F1 Kappa 

DWT 0.836 0.867 0.188 0.801 0.829 0.672 

LBP 0.838 0.867 0.184 0.802 0.829 0.675 

SIFT 0.853 0.875 0.206 0.821 0.863 0.705 

ELP 0.842 0.859 0.172 0.839 0.845 0.696 

3D U-Net 0.842 0.847 0.163 0.856 0.840 0.683 

3D ResNet 0.837 0.807 0.121 0.860 0.844 0.673 

3D DenseNet 0.827 0.796 0.229 0.824 0.803 0.652 

MedicalNet3D 0.846 0.835 0.130 0.849 0.856 0.693 

Our Method 0.859 0.875 0.100 0.867 0.833 0.708 

F  

c

I

C

w

3

t

t

m

c

m

d

t

p

l

(

b

s  

i

i

P

t

T

s

n

E

r

u

t

t

l

w

v

f

Fig. 6. The identification accuracy for different ROIs. The color denotes the classifi- 

cation accuracy from low (0.739) to high (0.883). (a)-(d) shows 16 ROIs of the brain 

with different classification accuracy from different views (i.e. left, right, top and 

down) respectively. 
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rom Fig. 5 , we can see that most of the selected features are lo-

ated in cornu ammonis 1(CA1) and Subiculum of Hippocampus. 

t is noticeable that some distinct Hippocampal Subfields (such as 

A1) are selected with the top 20% identification accuracy of AD, 

hich is consistent with the clinical experience. 

.3. Comparison with different feature extraction methods 

In this section, we compare the performance of feature ex- 

raction between the proposed SPHOG method and other fea- 

ure extraction methods. For the traditional feature extraction 

ethods, the extracted features based on 3D Bi-orthogonal Dis- 

rete Wavelet Transform (DWT) and LBP are selected using RELIEF 

ethod and classified using SVM. SIFT with automatic key point 

etection and scale determination [45] and Encoded Local Projec- 

ion(ELP) [46] are used with wrapper selection method for com- 

arison. For the deep learning methods, some general 3D deep 

earning methods are compared, such as 3D U-net [47] , 3D ResNet 

i.e. ResNet18 is used in this study), DenseNet [48] and 3D ResNet 

ased transfer learning method (MedicalNet3D) [30] . The network 

tructure of 3D U-Net is the same as described in [47] . For Med-

calNet3D, the transfer learning work is similar to that described 

n [30] , in which ResNet18 is used and fine-tuned for classification. 

arameters during training are set as follows: the batch size is 32; 

he learning rate is 0.001 and decays to 0.5 times every 50 epoch. 

he stopping condition for training is set as 500 epochs or early 

topping when the classification accuracy is higher than 0.97 and 

ot increases for successive 5 epochs. We use Adaptive Movement 

stimation (Adam) as optimization algorithm and Mean Square Er- 

or (MSE) as loss function during training. And a grid search is 

sed in norm regularization to prevent over-fitting. 

From the Table 4 , we can see that the traditional feature extrac- 

ion methods and deep learning methods achieve similar classifica- 

ion performance. Limited by sample size, the performance of deep 

earning methods is worse than the traditional methods. Compared 

ith traditional methods, the proposed method outperforms in 

arious indicators and in this way proves SPHOG’s effectiveness in 

eature construction. As classifier is not the central problem in our 
6 
lgorithm, SVM is employed for every traditional method in this 

xperiment. Compared with deep learning methods, the proposed 

ethod achieves better classification performance and meanwhile 

onsumes much less time and computation resources in operating 

rocess. 

.4. Classification results for other ROIs 

According to diagnostic experience and previous stud- 

es [34,49,50] , 16 distinct ROIs are selected for AD identification 

o show experimental results. Experimental settings are consistent 

ith the general settings in Left Hippocampus. 

As shown in Table 5 , proposed method achieves excellent per- 

ormance on these clinical discriminative ROIs. From Table 5 and 

ig. 6 , we can see that the average classification accuracy on 

araHippocampus and Hippocampus all are higher than 0.85. Fur- 

hermore, other brain regions related to cognition, such as Amyg- 

ala and Fusiform, also get distinct performance for AD diagnosis. 

his result is accord closely with clinic analysis that these ROIs are 

ssociated with cognitive function and illustrates the effectiveness 

f our algorithm. 

.5. Classification results on multi ROIs 

With the classification performance of various brain regions in 

ection 3.4 , a more comprehensive identification can be obtained 

cross different brain regions based on the histogram based wrap- 

er strategy. In particular, selected histograms from various brain 

egion combinations are utilized for incremental feature selection 

nd final classification. In this part, three different region combi- 

ations are used based on the result in Table 6 . AHP includes Hip-

ocampus, Amygdala and ParaHippocampus regions and has strong 

onnection with AD. Furthermore, these three brain regions also 

ets best classification performance compared with other brain re- 

ions as in Table 4 . Considering special performance of right Hip- 

ocampus, left and right ParaHippocampus, we also employ them 

s TOP3 combination. 

Experiment result is shown in Table. Compared with single re- 

ion classification performance, multi-region performs better and 

his illustrates complementary information in different brain re- 

ions. AHP-R also outperforms AHP-L, which illustrates the right 

aterality of brain. Moreover, TOP3 combination get best perfor- 

ance among three combination options, which illustrates the tex- 

ure distinction property of ParaHippocampus and Hippocampus. 
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Table 5 

Classification results for different ROIs . 

Name Accuracy TPR FPR Precision F1 Kappa 

Hippocampus-L 0.859 0.875 0.100 0.867 0.833 0.708 

Hippocampus-R 0.880 0.850 0.094 0.884 0.866 0.757 

Amygdala-L 0.821 0.785 0.146 0.823 0.801 0.638 

Amygdala-R 0.840 0.785 0.113 0.853 0.815 0.674 

ParaHipp-L 0.874 0.859 0.113 0.866 0.860 0.745 

ParaHipp-R 0.883 0.823 0.066 0.912 0.864 0.762 

Caudate-L 0.813 0.781 0.159 0.809 0.793 0.621 

Caudate-R 0.802 0.759 0.162 0.796 0.775 0.598 

Cingulum-Ant-L 0.745 0.605 0.134 0.791 0.681 0.477 

Cingulum-Ant-R 0.739 0.739 0.257 0.711 0.721 0.476 

Cingulum-Post-L 0.807 0.879 0.265 0.780 0.826 0.608 

Cingulum-Post-R 0.827 0.867 0.221 0.816 0.841 0.650 

Fusiform-L 0.823 0.718 0.091 0.864 0.782 0.635 

Fusiform-R 0.822 0.789 0.148 0.822 0.802 0.640 

Angular-L 0.739 0.551 0.104 0.811 0.650 0.651 

Angular-R 0.786 0.634 0.089 0.852 0.723 0.556 

Table 6 

Classification results based on multi brain regions combination . 

Name Accuracy TPR FPR Precision F1 Kappa 

AHP 0.898 0.870 0.077 0.904 0.885 0.792 

AHP-L 0.873 0.861 0.116 0.861 0.859 0.743 

AHP-R 0.895 0.860 0.075 0.905 0.880 0.787 

TOP3 0.904 0.880 0.086 0.897 0.887 0.792 
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[  
. Conclusions 

In this paper, we proposed a novel feature learning method for 

D identification. From spatial pyramid representation, the multi- 

esolution SPHOG features are constructed to distinguish the defor- 

ation characteristics of cerebral cortex comprehensively. With the 

roposed histogram based wrappered feature selection algorithm, 

he discriminative SPHOG features are selected and the feature di- 

ensions are reduced. Experimental results show that the selected 

PHOG features outperforms other 3D-HOG features with single 

esolution. Furthermore, some distinct Hippocampal Subfields and 

ome ROIs associated with cognitive function show high identifica- 

ion accuracy of AD, which is consistent with the clinical analysis. 

Considering for future improvement, our method mainly fo- 

us on a general explainable framework for AD identification and 

n each step more specific work can be done. More informa- 

ive feature extraction methods and feature selection process can 

trengthen identification performance. Moreover, with current de- 

ected volumes more exploration can be done in both CAD and 

linical fields to analyze these sensitive regions. That could be use- 

ul for further medical analysis to find distinct subfields of ROIs of 

he brain for early diagnosis of AD. 
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